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First-principles derivation of magnetic interactions in the triangular quantum spin liquid
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The AYbCh2 (A = alkali metal, Ch = chalcogen) delafossites are a family of crystals which have a triangular
lattice of effective S = 1/2 moments on their Yb atoms. They hold great promise for the realization of the
triangular quantum spin liquid state because of their defect-minimized growth and the ability to interchange
chemical constituencies among the family. Here we use ab initio computations to evaluate the exchange
couplings of four realized (and one theoretical) rhombohedral delafossite structures and examine the influence of
chemical substitution on promoting the development of a quantum spin liquid state. We find good agreement with
experiment regarding the antiferromagnetic nearest-neighbor exchange J1, but our calculations underestimate J2.
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I. INTRODUCTION

A quantum spin liquid (QSL), broadly, is a system of
interacting spins with long-range entanglement which lacks
magnetic order even at zero temperature. The Lieb-Schultz-
Mattis theorem guarantees that the ground state of such a
system is either gapless or gapped with fractionalized topo-
logical order [1–3]. A fruitful starting place for systems which
lack magnetic order is the antiferromagnetic triangular lattice
which leads to highly frustrated magnetism [4]. The pos-
sibility of a resonating valence bond state on a triangular
lattice with antiferromagnetically coupled nearest-neighbor
spins was proposed 50 years ago [5,6], but it happens that the
ground state of the Heisenberg triangular lattice antiferromag-
net is the 120◦ Néel state [7,8]. This can be destabilized by
the application of nearest-neighbor exchange anisotropy [9]
or beyond-nearest-neighbor exchange [10,11].

There is growing interest in the delafossite family of ma-
terials as QSL candidates [12,13]. They are an attractive
avenue for identifying a QSL state because they lack the
site disorders in the nonmagnetic constituents which plague
another QSL candidate, YbMgGaO4 [14–19]. A large set of
the family of delafossites AYbCh2 (A = alkali metal, Ch =
chalcogen) has been synthesized already, exhibiting antiferro-
magnetic coupling with a range of Curie-Weiss temperatures
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and no magnetic ordering observed in the specific heat and
susceptibility measurements down to 50 mK (in the A = Na
compounds) [20]. Neutron diffraction and measurements of
the crystal electric field excitations indicate these delafossites
are relatively devoid of structural disorder [11,21]. Experi-
mental evidence of diffuse neutron spectra [12], entanglement
witnesses (ruling out classical glassy states) [22], and study
of the magnons of the 1/3-magnetization plateau at interme-
diate applied magnetic fields [23,24] all assist in collecting
evidence of QSL features in these systems.

There is some variability of magnetic properties among the
members of the delafossite family which indicates that some
are more suitable QSL candidates than others. In hexagonal
CsYbSe2, magnetic Bragg peaks start to show intensity be-
low 400 mK [25,26]. Though magnetic ordering has been
shown in KYbSe2 below 290 mK, it is proximate to the
QSL phase [22]. There has been no long-range ordering
shown in RbYbSe2 down to 400 mK [23], in KYbS2 down
to 400 mK [27], in NaYbO2 down to 70 mK [11], in NaYbS2

down to 50 mK [28], and in NaYbSe2 down to 40 mK [12]
and 50 mK [29,30]. Some members of this crystal family
exhibit what has been called a “critical QSL” state in that
they order for extremely low temperatures when a sufficiently
strong (and directionally dependent) magnetic field is ap-
plied [28,29,31–35].

In AYbCh2 the Yb atoms form a triangular lattice, and
strong crystal field effects lead to the effective S = 1/2
Kramers doublet on each Yb site which allows for large
quantum effects [36]. Additionally, each Yb-Yb bond is
bisected by an inversion center, forbidding Dzyaloshinskii-
Moriya interactions which would otherwise tend to temper
spin frustration. [32]. It has already been stated that beyond-
nearest-neighbor exchange can introduce sufficient frustration
to suppress magnetic ordering; out-of-plane exchange and
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anisotropy will complicate this picture. To achieve the QSL
state, the theoretical range for the ratio of the second-nearest-
neighbor exchange to the nearest-neighbor exchange is 0.06
� J2/J1 � 0.16 (with individual papers sometimes offering
a tighter range than this) [10,37–39]. Estimates of this ratio
have been given for a handful of the delafossites: CsYbSe2,
J2/J1 = 0.03 [26]; KYbSe2, J2/J1 = 0.04 [22,24]; NaYbSe2,
J2/J1 = 0.07 [24]; and NaYbO2, J2/J1 = 0.13 − 0.15 [11].
The AYbCh2 family shows great promise at hosting QSL
physics, but the variability even among these similar com-
pounds underscores the need for adequate theory to buttress
the search for QSLs within the delafossites.

Extensive work has been done to derive nearest-neighbor
exchanges in Yb-based magnets such as pyrochlore oxides
and the triangular lattice QSL candidate YbMgGaO4 [36,40–
43]. In this paper we derive the magnetic exchange cou-
plings for KYbCh2 (Ch = S, Se, Te) and AYbSe2 (A = Na,
Rb) for not only the nearest-neighbor bonds but also for
a number of longer-range bonds. To this end, we com-
bine density functional theory (DFT), Wannier functions, and
strong-coupling perturbation theory. Our nearest-neighbor ex-
change couplings are in excellent agreement with experiment,
but our second-nearest-neighbor exchange couplings are an
order of magnitude smaller compared to experiment. We find
that the exchange anisotropies are a factor of 14–69 times
smaller compared to their optimal value for stabilizing a QSL.
Our calculations also show there to be sizable out-of-plane
interactions Jout

1 /J1 ∼ 0.035.
The paper is organized as follows: In Sec. II we explain

the use of DFT, Wannier functions, perturbation theory, and
the model used to extract the exchange couplings. In Sec. III
we analyze the hopping matrices and examine the relative
magnitudes of the exchange couplings with an eye for com-
parison to experiment. Next we discuss the limitations and
implications of the present calculation in Sec. IV, and we
make our conclusions in Sec. V.

II. METHODS

We follow a three-step procedure to derive the magnetic
interactions in these delafossites, following KYbSe2 as the
representative example. First we perform non-spin-polarized
DFT calculations. Then we project onto Wannier functions
to obtain hopping parameters and the crystal field. Finally
we perform strong-coupling perturbation theory to extract the
exchange parameters.

A. Density functional theory

We perform the DFT calculations as implemented in
VASP [44,45]. The calculations are performed within the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approx-
imation (GGA) [46] for the exchange-correlation functional
with and without spin-orbit coupling (SOC). We use projec-
tor augmented wave (PAW) pseudopotentials [47,48] with an
energy cutoff of 300 eV and a 9 × 9 × 9 Monkhorst-Pack
k-point mesh. The pseudopotential for each alkali metal and
Yb treated the s and p semicore states as valence states.
The energy cutoff for NaYbSe2 is 700 eV. The experimental
lattice constants for each structure are utilized, but the atomic
positions are allowed to relax until component forces are

less than 1 meV/Å along each lattice vector direction in the
absence of SOC.

B. Wannierization

We use WANNIER90 [49–51] to create a tight-binding
Hamiltonian by projecting the band structure onto real (ax-
ial) Yb f orbitals. The maximal-localization step is not
performed in order to maintain the symmetry characters
of the Wannier functions. In the case without SOC the
frozen window includes only the seven f bands at the Fermi
level which comprise a disconnected manifold of bands;
disentanglement is unnecessary. In the case with SOC the
frozen window again includes those bands at the Fermi level
([−0.3277, 0.7723] eV with respect to the Fermi level), but
disentanglement is necessary and the disentanglement con-
vergence criterion is set to 10−13 Å2. The disentanglement
window is [−3.2277, 0.7723] eV with respect to the Fermi
level. The resulting Hamiltonian is ensured to be symmetrized
by postprocessing with WANNSYMM [52], and we rotate from
the axial f orbitals to the cubic f orbitals befitting our choice
of coordinate system as shown in Appendix A.

C. Perturbation theory

Strong-coupling perturbation theory is used by starting
with the crystal field, hopping, and SOC derived in the Wan-
nier basis. The Hamiltonian is split into two pieces: the
unperturbed part H0 = Hcf + H loc

soc + H loc
int consisting of the

crystal field, local SOC, and local interacting Hamiltonian,
and the perturbation δH = Hhop + Hnloc

soc consisting of the
hopping and nonlocal SOC. Hsoc is given by the difference,
Hrel − Hnrel, between the relativistic and nonrelativistic Wan-
nier Hamiltonians, and the local part contains only the on-site
parameters while the remainder comprises the nonlocal part.

Using second quantization the single-particle part of the
local Hamiltonian of Yb 4 f electrons may be expressed as

Hcf + H loc
soc =

∑
σ,σ ′

∑
m,m′

hm,σ,m′,σ f †
m,σ fm′,σ ′ , (1)

where hm,σ,m′,σ includes both crystalline fields and SOC, and
f (†)
m,σ is an annihilation (creation) operator of an f electron

with the polar component of orbital angular momentum m and
spin σ .

For strongly correlated electron systems, such as Yb
compounds with partially filled 4 f orbitals, local Coulomb
interactions between electrons have the largest energy scale.
Local interactions for Yb 4 f electrons may be expressed as

H loc
int = 1

2

∑
σ,σ ′

∑
m1,m2

∑
m′

1,m
′
2

Um1,m2,m′
1,m

′
2

f †
m1,σ

f †
m2,σ ′ fm′

2,σ
′ fm′

1,σ
.

(2)
Here, Um1,m2,m′

1,m
′
2

is derived from the Coulomb integral:

Um1,m2,m′
1,m

′
2
=

∫
dr1

∫
dr2 ψ∗

m1
(r1)ψ∗

m2
(r2)

e2

|r1 − r2|
× ψm′

2
(r2)ψm′

1
(r1). (3)

When electron wave functions are well approximated by
atomic 4 f orbitals, i.e., ψm(r) = R43(r)Y m

3 (θ, ϕ), this integral
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is expressed using Slater integrals F 2k with k ∈ {0, 1, 2, 3} as

Um1,m2,m′
1,m

′
2
= δm1+m2,m′

1+m′
2
(−1)m1−m′

1

×
3∑

k=0

c2k (m1, m′
1) c2k (m2, m′

2) F 2k . (4)

Here, F 2k is defined by using a radial function of 4 f orbitals,
R43(r), as

F 2k =
∫ ∞

0
r2

1dr1

∫ ∞

0
r2

2dr2 R2
43(r1)R2

43(r2)
r2k
<

r2k+1
>

, (5)

where r>(<) is the larger (smaller) of radial coordinates r1 and
r2 [53], and c2k (m, m′) is defined by using spherical harmonics
Y m

l (θ, ϕ) of 4 f orbitals as

c2k (m, m′) =
√

4π

4k + 1
(−1)m

∫
d� Y −m

3 Y m−m′
2k Y m′

3

= 7(−1)m

(
3 2k 3
0 0 0

)(
3 2k 3

−m m − m′ m′

)
.

(6)

The explicit dependence on the angular variables was omitted
for brevity, and the parenthesized quantities are the Wigner
3j symbols. The values of dimensionless functions c2k (m, m′)
for f electrons are summarized in Appendix B.

The local Hamiltonian H0 is numerically diagonalized
with f -electron occupation of n f = 14 for Yb2+, n f = 13 for
Yb3+, and n f = 12 for Yb4+. Instead of estimating each Slater
integral for Yb 4 f electrons from the first-principles calcula-
tion, we assume that the Slater integrals do not significantly
depend on the valence of Yb and use experimental values
as reported in Ref. [54]: F 2 = 114 180 cm−1 = 14.156 eV,
F 4 = 80 688 cm−1 = 10.004 eV, and F 6 = 64 733 cm−1 =
6.934 eV. Since F 0 for Yb systems is not known yet, we treat
F0 as a parameter and estimate exchange integrals as functions
of F 0. The dependence on F 0 is presented in Appendix C. For
the specific results presented in Sec. III, we use F 0 = 10 eV.

In Appendix B we show the energy spectra of the Yb
ion in KYbSe2 in two valence configurations. There is good
agreement with Ref. [36], except for the degeneracy lifting
of multiplets in our case because the crystalline field derived
from first-principles calculations breaks the spherical symme-
try.

Starting from the ground state Kramers doublet of the Yb3+

ion with 4 f 13 configuration, we carry out second-order pertur-
bation theory calculations with respect to intersite hopping of
4 f electrons to derive exchange interactions of intersite Yb
moments.

H0 is diagonalized exactly and δH is treated according to
second-order perturbation theory,

〈l|Hspin|l ′〉 =
∑

h

〈l|δH |h〉 〈h|δH |l ′〉
El − Eh

, (7)

with El and |l〉 the energy and eigenstate of the degenerate
low-energy state of H0, and Eh and |h〉 are the energies and
eigenstates of the high-energy states of H0.

In this process it is necessary to fix the gauge of the ground
state Kramers doublet or the direction of the local spin quan-
tization axis. We first rotate the local spin axes such that the z̃

axis is normal to the Yb plane, and x̃ and ỹ axes are in the Yb
plane. The original spin components (S j ) and the new spin
components (S j̃ ) represented with the new quantization axis
are related via⎛

⎝Sx

Sy

Sz

⎞
⎠ = 1√

6

⎛
⎜⎝−1

√
3

√
2

−1 −√
3

√
2

2 0
√

2

⎞
⎟⎠

⎛
⎝Sx̃

Sỹ

Sz̃

⎞
⎠. (8)

The ground state Kramers doublet is reexpressed so as to di-
agonalize the 2 × 2 matrix of Sz̃, and a relative phase between
the doublet states is fixed appropriately. After deriving the
exchange interactions in the basis with the new quantization
axis, we rotate the spin axes back to the original axes.

The spin Hamiltonian is written in terms of the spin opera-
tors,

Hspin =
∑

γ=x,y,z

⎛
⎝ ∑

〈r,r′〉γ
Sr · Jγ

1 · Sr′

⎞
⎠ + Jout

1

∑
〈r,r′〉⊥

Sr · Sr′

+ J2

∑
〈〈r,r′〉〉

Sr · Sr′ + J3

∑
〈〈〈r,r′〉〉〉

Sr · Sr′ , (9)

with γ ranging over the different bonds, 〈r, r′〉, 〈〈r, r′〉〉,
and 〈〈〈r, r′〉〉〉 meaning the nearest, second, and third neigh-
bors in plane, and 〈r, r′〉⊥ meaning the nearest out-of-plane
neighbors. In particular one may inspect the nearest-neighbor
exchange matrices,

Jx
1 =

⎛
⎝J1 + K1 
′

1 
′
1


′
1 J1 
1


′
1 
1 J1

⎞
⎠,

Jy
1 =

⎛
⎝J1 
′

1 
1


′
1 J1 + K1 
′

1

1 
′

1 J1

⎞
⎠, (10)

Jz
1 =

⎛
⎝J1 
1 
′

1

1 J1 
′

1

′

1 
′
1 J1 + K1

⎞
⎠.

In this study we ignore exchange anisotropies beyond the
nearest in-plane neighbors due to their small numerical values.
For the out-of-plane bonds we limit ourselves to the nearest
neighbors for simplicity. The Dzyaloshinskii-Moriya interac-
tions vanish due to the inversion symmetry. The mth exchange
pairs are denoted in Fig. 1, and parameters of the model are
reported in Tables III and IV.

D. Crystal structure

We consider the rhombohedral delafossites belonging to
space group R3̄m (No. 166). Relevant crystallographic param-
eters are given in Table I and depicted in Fig. 1(a). The alkali
metal, Yb, and chalcogen are at the 1b, 1a, and 2c Wyckoff
sites, respectively. The Yb atoms form a triangular lattice in
their layers octahedrally coordinated with chalcogen atoms,
Fig. 1(b).

III. RESULTS

The electronic structure of KYbSe2 without SOC is pre-
sented in Fig. 2(a). The Yb f bands reside at the Fermi level
whereas the valence bands are comprised of Se p. The next-
lowest conduction bands are primarily s character at 
 or Yb
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TABLE I. Crystallographic data. The rhombohedral lattice parameter, ar , and angle, αr , are given in Å and degrees, respectively. x is the
fractional Wyckoff coordinate and xrel is the same after DFT relaxation. ah and ch are the hexagonal lattice parameters in Å.

KYbS2 [55] KYbSe2 [56] KYbTe2
a NaYbSe2 [57] RbYbSe2 [23]

ar 7.6213 7.9292 8.6578 7.3094 8.2349
αr 30.128 30.049 30.157 32.227 29.096
x 0.2665 0.2653 – 0.2424 0.2316

xrel 0.2651 0.2635 0.2640 0.2552 0.2669
ah 3.9615 4.1110 4.5046 4.0568 4.1371
ch 21.810 22.697 24.774 20.772 23.643

aTheoretical structure.

d at other high-symmetry points. Application of SOC alters
this picture primarily by splitting the Yb- f complex into four
doubly degenerate J = 7/2 bands at the Fermi level and forc-
ing three doubly degenerate J = 5/2 bands down into the Se
p manifold (presented in Appendix D). The f -band model re-
produces the bands at the Fermi level very well because of the
frozen window utilized during the Wannier disentanglement
process, but the lower bands are not because of their entan-
glement with the Se p bands. Fundamentally though, the hy-
bridization among Yb f and Se p orbitals is taken into account
in the model by demanding the bands at the Fermi level be
reproduced. This can also be seen in Fig. 2(b) in the resultant
Wannier functions; showing an fz(x2−y2 ) orbital as an example,
the familiar f -orbital shape is present at the Yb atom and p
tails exist at the Se sites both above and below the triangular
lattice plane. In this regard the model contains Se-p-assisted
hopping among Yb atoms beyond direct Yb-Yb exchange.

The on-site matrix elements of the model without SOC
are shown in Table II. The hoppings to the nearest neigh-
bors are presented in Appendix E. The complete set of
hoppings with and without SOC is contained in the Supple-
mental Material [58]. The orbitals are grouped so that the
symmetry afforded by the choice of the cubic-axis Cartesian
system is apparent. Referring to Appendix E, within respec-
tive subblocks of the tables the hoppings associated with other

FIG. 1. Crystal structure of AYbCh2. (a) The primitive cell for
space group R3̄m. The Yb atom is placed at the origin which is an
inversion center. (b) The structure in plane exhibiting the triangular
lattice of Yb atoms. The symmetric choice of the Cartesian axes lying
most closely along the Yb-Ch bonds is emphasized.

threefold partner bonds are found by cyclic permutation of
{x, y, z}.

The largest hopping parameters for the nearest and second-
nearest neighbors occur between the same orbital: y3-y3 for
the X1 bond and x3-x3 for the X2 bond. However, for the
third-nearest neighbor the largest hopping parameter is be-
tween different orbitals (but still within the same permuting
subblock), y3-z3 for the X3 bond. The largest-magnitude hop-
ping parameter for the third-nearest neighbor even exceeds
the largest hopping parameter of the second-nearest neighbor.
This alerts to an issue, for previous studies fitting the inelastic
neutron scattering spectrum have achieved an excellent fit on
the basis of a J1 − J2 model with no recourse to J3 [22,24].

We show the local and nonlocal SOC parameters of
the model in Appendix D. As mentioned, the SOC ma-
trix of the model is the difference between the rela-
tivistic and nonrelativistic Hamiltonians, Hrel − Hnrel. In
Appendix D, it is apparent that the SOC is close to
the atomiclike case (there is some deviation, discussed
therein). Our fitted λ = 0.390 eV is in excellent agreement
with the literature for the Yb4+ ion (0.378 eV [59] and
0.380 eV [54]). However, the largest nonlocal SOC ma-
trix element is ∼18% of the smallest local SOC interorbital
matrix element and this is not entirely negligible. This is a
feature of the Yb f and Se p hybridization.

FIG. 2. (a) Band structure of KYbSe2 without spin-orbit cou-
pling. Black dashed lines are DFT and red lines are produced from
WANNIER90. (b) An example of the resultant Wannier functions, here
for the fz(x2−y2 ) projection. Positive (negative) isosurfaces are drawn
in red (blue).
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TABLE II. On-site energies (meV) without spin-orbit coupling.

On site
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 3.19 3.19 3.19 0 0 0
x3 3.19 43.97 10.89 10.89 0 2.26 −2.26
y3 3.19 10.89 43.97 10.89 −2.26 0 2.26
z3 3.19 10.89 10.89 43.97 2.26 −2.26 0

x(y2-z2) 0 0 −2.26 2.26 −38.72 2.59 2.59
y(z2-x2) 0 2.26 0 −2.26 2.59 −38.72 2.59
z(x2-y2) 0 −2.26 2.26 0 2.59 2.59 −38.72

Table III shows the resultant exchange parameters for the
model including full SOC and F 0 = 10 eV. For the general
dependence on F 0 see Appendix C. For KYbSe2, J1 is more
than two orders of magnitude greater than J2 ∼ J3. Consistent
with the examination of the hopping parameters, J3 is even
larger than J2. The out-of-plane exchange, Jout

1 , is rather larger
than J2 but at least has a constant sign across the investigated
materials. This is in contrast to J2 which is antiferromagnetic
except for KYbS2 and NaYbSe2. The signs of K1, 
1, and 
′

1
are constant across the materials except in the case of 
′

1 for
KYbS2. The ratio |J2/J1| strictly grows with substitution of
heavier chalcogen atoms, and separately, strictly grows with
substitution of heavier alkali metal atoms. However, due to
the smallness of J2 in the theory, |J2/J1| is woefully small and
far from the range which is conducive for a QSL.

One may also take the exchange coupling set
{J1, K1, 
1, 


′
1} and transform to an alternative coordinate

system which explicitly separates the bond-dependent
anisotropic part of the Hamiltonian, described by the set
{J,, J±±, Jz±} [60]. In that case  characterizes the
easy-plane ( < 1) or easy-axis ( > 1) anisotropy, J±± the
in-plane anisotropy, and Jz± the off-diagonal anisotropy [61].
Across these materials J±±/J is tiny, which is often assumed
to be the case, and is between a factor of 17 and 83 times
smaller than the optimal value for a QSL [9]. That is not

TABLE III. Exchange constants. The transformed exchange con-
stants {J, /J , Jz±/J , J±±/J} are also reported to ease comparison
across the literature, including Ref. [9].

KYbS2 KYbSe2 KYbTe2
a NaYbSe2 RbYbSe2

J1 (meV) 0.964 0.461 0.437 0.539 0.466
J2 (µeV) −0.035 1.958 3.017 −0.505 3.288
J3 (µeV) 1.209 3.882 0.385 2.796 5.424
Jout

1 (meV) 0.007 0.016 0.020 0.041 0.009

J2/J1 −4×10−5 0.004 0.007 −0.001 0.007
Jout

1 /J1 0.008 0.035 0.045 0.076 0.019

K1 (µeV) 4.964 16.604 14.007 19.157 16.484

1 (µeV) −2.639 −13.659 −7.543 −10.188 −12.780

′

1 (µeV) 2.903 −3.677 −6.583 −3.252 −3.234

J (meV) 0.965 0.474 0.449 0.551 0.478
/J 1.003 0.956 0.954 0.970 0.959
Jz±/J −0.005 −0.026 −0.016 −0.022 −0.026
J±±/J 0.001 0.001 −0.004 −0.002 0.001

aTheoretical structure.

TABLE IV. Exchange energies (meV) for nearest neighbor
(1NN) and second-nearest neighbor (2NN) in plane and out of plane
for KYbSe2.

KYbSe2
1

2U

∑
i j |ti j |2 Ja

1NN in plane 2.387 0.461
2NN in plane 0.173 0.002
1NN out of plane 0.018 0.016
2NN in plane / 1NN in plane 0.072 0.004
1NN out of plane / 1NN in plane 0.008 0.035

aThe relevant entry appears in the upper half of Table III.

necessarily lethal for the QSL phase on its own since Jz±/J is
primarily dispositive of the QSL phase reported in Ref. [9].
But Jz±/J across these materials is between a factor of 14 and
69 times smaller than the optimal value.

The trend for J1 is in excellent agreement with experi-
ments. For KYbSe2, J1 = 0.463 meV (nonlinear spin wave fit
0.456 ± 0.013 meV [24]), and for NaYbSe2, J1 = 0.543 meV
(nonlinear spin wave fit 0.551 ± 0.010 meV [24]). However,
the calculated J2 is an order of magnitude too small. The ferro-
magnetic J2 for NaYbSe2 notably disagrees with experiment
which indicates an antiferromagnetic J2 [24]. The alkali metal
substitutional trend for |J2/J1| is the reverse of what has been
found experimentally [24,26].

How is it that the theory so substantially underestimates J2?
Dissecting the different exchange paths is a complex endeavor
beyond the scope of this work. Still we can glean some under-
standing of the smallness of J2 by comparing the exchange
couplings to the sum of the squares of the hopping parameters
divided by U . This quantity serves as a rudimentary estimate
of the exchange coupling which does not allow for exchange
path cancellation and is reported in Table IV . The sum of the
squares of the hoppings is quite comparable to the nearest-
neighbor out-of-plane exchange parameter, but for the nearest
and second-nearest in-plane bonds it is one and two orders
of magnitude larger, respectively. This indicates that there
are large cancellations occurring among the ferromagnetic
and antiferromagnetic exchange paths for the second-nearest
neighbors in particular. If one focuses on the ratios of these
sums of squares of the hopping parameters, it is intriguing that
the ratio between the second-nearest- and nearest-neighbor
in-plane bonds is much closer to experiment [24] and falls
into the range which is favorable for QSL development.

IV. DISCUSSION

The theory accurately captures J1 for the two available
experimental observations, but J2 is an order of magnitude
smaller compared to experiment and displays the wrong trend
for alkali metal substitution. Also J2 has the wrong sign for
NaYbSe2 compared to experiment. In our theory we included
the Yb f degrees of freedom only. However, the Hubbard
U is on the order of 10 eV, which is rather larger than the
energy difference between the Se p and Yb f bands (i.e.,
charge transfer gap without SOC) that can be roughly esti-
mated from Fig. 2 to be ∼2 eV. Even without the Hubbard
U , the SOC already pushes the Yb f bands into the Se p
band complex (see Appendix D). Therefore including the
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Se p degrees of freedom in the perturbation theory has the
potential to improve the theoretical results compared to the
experiment.

We remind the reader that the Yb f Wannier functions
encode information about the Se p tails [Fig. 2(b)] which
mediate the exchange and contribute to both J1 and J2. Still,
suppose that J1 were dominated by direct exchange among
the Yb atoms. If one were to include the Se p degrees of
freedom explicitly under this assumption and compare to our
result, one would find that J1 is relatively insensitive whereas
J2 could increase with the addition of extra exchange paths.
In this way it is possible (though not guaranteed) that J2/J1

could be enhanced when projecting onto both Yb f and Se p
orbitals.

In Ref. [36] the nearest-neighbor exchange couplings were
computed by including the anion p degrees of freedom and
applying fourth-order perturbation theory. However, second-
nearest-neighbor Yb atoms do not share a Se atom, so
sixth-order perturbation theory would be necessary. Another
option would be to fit the exchange couplings against total
energies of various magnetic configurations obtained from
DFT + U . The advantage of this approach is that it takes all
degrees of freedom into account, not only Yb f and Se p
but also, for example, Yb d and Se s in the conduction band
[Fig. 1(a)]. The disadvantage of the total energy approach is
that because of the large interactions, the exchange couplings
in the transition-metal f systems are on the order of meV
which is also reaching the limit of accuracy of DFT. Further,
in DFT + U calculations one can easily descend into a lo-
cal minimum during the self-consistent minimization, which
makes the total energy approach challenging.

Since the exchange couplings in f systems are so small,
dipolar interactions can possibly play a role. Using the for-
mula from Ref. [36] we find the dipolar interaction strength
for the second-nearest neighbor to be 0.0025 meV. This is
comparable to the superexchanges computed in this work, but
it is still an order of magnitude smaller than the experimental
observations. Including dipolar interactions therefore does not
account for the theoretically diminished J2 as compared to
experiment.

Our first-principles treatment allows for comprehensive
inclusion of the crystalline electric field and SOC, imply-
ing a breakdown of the SU(2) symmetry. Biquadratic terms
[∼(Sr · Sr′ )2] are therefore permitted to arise [62], and this
has been shown to be important in (especially) one- and
two-dimensional systems with S > 1/2 [63–65]. However,
since the ratio of the biquadratic-to-bilinear exchange goes
as ∼t2/U 2 [66], we estimate that such terms would be four
orders of magnitude smaller than the nearest-neighbor ex-
change. We also point out that biquadratic terms were not
needed to fit inelastic neutron scattering experiments on
KYbSe2 and NaYbSe2 [22,24].

Finally it is interesting to emphasize that the nearest-
neighbor out-of-plane exchange parameters are rather large.
Experimentally these exchanges still need to be resolved. If
indeed the out-of-plane couplings are large, then this would
pose a challenge for realizing the QSL. Perhaps chemical
intercalation or tensile strain could be used to increase the
distance between the Yb planes and avoid this undesirable
effect.

V. CONCLUSION

We have derived the magnetic exchange couplings for
KYbCh2 (Ch = S, Se, Te) and AYbSe2 (A = Na, Rb) from
first principles by combining DFT, Wannier functions, and
strong-coupling perturbation theory. We found good agree-
ment with experiment for the nearest-neighbor coupling J1,
as well as producing as much of the chemical trend in the
literature. However, when one goes to the second-nearest-
neighbor exchange couplings, the theory is wanting. Our
|J2/J1| ratios are an order of magnitude smaller than those
found in experiment, and the sign of J2 for NaYbSe2 is incor-
rectly ferromagnetic. The theoretical trend of the magnitude
of J2 with heavier alkali metal substitution is the reverse of
the experimental trend, but our theory predicts that heavier
chalcogen substitution pushes |J2/J1| closer to the desired
ratio for the QSL state. The interaction parameters indicate
all of these delafossites are far from the exchange-anisotropy-
induced QSL regime. We also found significant out-of-plane
couplings (relative to the in-plane J2), and it will be interesting
to see how well theory compares to future experiments.
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APPENDIX A: DEFINITION OF AXIAL
AND CUBIC f ORBITALS

The order of the real axial f -orbital angular functions in
WANNIER90 is

fz3 =
√

7

16π

5z3 − 3zr2

r3
= Y 0

3 ,

fxz2 =
√

21

32π
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√
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,
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√
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,
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√

105

16π

2xyz

r3
= i√

2

(
Y −2

3 − Y 2
3

)
,

fx(x2-3y2 ) =
√
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,
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2

(
Y −3

3 + Y 3
3

)
,
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where each is also identified as the linear combination of
spherical harmonics (Y m

l ). An alternative set of angular func-
tions is the set of real cubic harmonics, which is more
convenient to take advantage of the symmetry of our choice
of cubic Cartesian coordinate system,

f̃xyz =
√

105

16π

2xyz

r3
= fxyz,

f̃x3 =
√

7

16π

x(5x2-3r2)

r3
= −

√
3

8
fxz2 +

√
5

8
fx(x2-3y2 ),

f̃y3 =
√

7

16π

y(5y2-3r2)

r3
= −

√
3

8
fyz2 −

√
5

8
fy(3x2-y2 ),

f̃z3 =
√

7

16π

z(5z2-3r2)

r3
= fz3 ,

f̃x(y2-z2 ) =
√

105

16π

x(y2-z2)

r3
= −

√
5

8
fxz2 −

√
3

8
fx(x2-3y2 ),

f̃y(z2-x2 ) =
√

105

16π

y(z2-x2)

r3
=

√
5

8
fyz2 −

√
3

8
fy(3x2-y2 ),

f̃z(x2-y2 ) =
√

105

16π

z(x2-y2)

r3
= fz(x2-y2 ).

APPENDIX B: ENERGY SPECTRUM

For Yb compounds, the crystalline field effect deduced by
our first-principles calculation is found to be rather small. We
show in Fig. 3 energy spectra of the Yb ion in KYbSe2.

The Yb3+ ion has seven Kramers doublets: four low-energy
doublets (three high-energy doublets) spread in energy by
about 0.04 (0.05) eV. In the Yb4+ ion, eigenstates are clustered
in 13 energy regimes with the number of states given by 13,
9, 11, 9, 7, 5, 9, 5, 13, 1, 3, 5, and 1 from low energy to high
energy. The spread in energy of each cluster is at most 0.1 eV.
Thus the energy scale of the crystalline field is no more than
0.1 eV, which is slightly smaller than the energy scale of SOC,
and two orders of magnitude smaller than the energy scale of
the Coulomb interaction.

When the crystalline field is artificially turned off, each
cluster of eigenstates recovers degeneracy: for a free Yb3+
ion there is an eightfold-degenerate state for the lower energy
states and a sixfold-degenerate state for the higher energy
states (total angular momentum 7

2 and 5
2 , respectively), and for

a free Yb4+ ion, the number of degeneracy corresponds to the
number of states reported for each cluster, above. The values
of dimensionless functions c2k (m, m′) for f electrons used to
express the Coulomb integral in terms of Slater integrals are
summarized in Table V.

APPENDIX C: EXCHANGE PARAMETER
DEPENDENCE ON F0

We present exchange parameters obtained for KYbSe2

as functions of F 0. As expected, exchange parameters are
roughly proportional to 1/F 0 as shown in Figs. 4(a)–4(d), but
different parameters have different slopes because these are

0.00 0.01 0.02 0.03 0.04 1.34 1.36 1.38 1.40 1.42 1.44

E (eV)

Yb f13 

0 1 2 3 4 5 10.5 11.0

E (eV)

Yb f12 

13 9 11 9 7 5 9 5 13 1 3 5
# of states

1

(a)

(b)

FIG. 3. Energy spectrum of Yb ion in KYbSe2. (a) Spectrum
with the 4 f 13 configuration for Yb3+, and (b) spectrum with the 4 f 12

configuration for Yb4+. The single-particle parameters are derived
from first-principles calculations while the values of Slater integrals
F 2,4,6 are taken from Ref. [54]. These results are independent of
F 0 because energy is measured from the ground state of each 4 f
occupation. In (a), every energy level has Kramers degeneracy, i.e.,
twofold degeneracy. Numbers in (b) indicate the number of states
in multiplets, whose degeneracy is lifted because the crystalline
field derived from first-principles calculations for KYbSe2 breaks the
spherical symmetry.

characterized by different virtual hopping processes, exciting
electrons to high-energy states in different ways.

APPENDIX D: SPIN-ORBIT COUPLING

The SOC matrix has the form

Hsoc =
(

h↑↑ h↑↓
−h∗

↑↓ h∗
↑↑

)
. (D1)

We present the topmost 7 × 7 blocks, and the rest of the
Hamiltonian may be swiftly derived from there. For localized
spherically symmetric f orbitals H loc

soc is given by λ�L · �S of the
form shown in Table VI. Tables VII and VIII show the local
and nonlocal SOC matrices of the model, respectively. H loc

soc is
not identically of the form as the atomic SOC, e.g., the ratio of
〈x(y2-z2)|�L · �S|y3〉 to 〈y3|�L · �S|x3〉 is 1.49 rather than

√
15/3,

and there are nonzero terms on the diagonal. Still, the nonlocal
part is not so large and the local deviation is manageable,
so we fit λ by minimizing the sum of the squared residuals
for all the elements of H loc

soc against λ�L · �S. There is excellent
agreement between our fit, λ = 0.390 eV, and the literature
for the Yb4+ ion (0.378 eV [59] and 0.380 eV [54]). The band
structure of KYbSe2 with SOC is presented in Fig. 5.
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FIG. 4. Exchange parameters of KYbSe2 as functions of F0. (a) Symmetric Heisenberg, (b) pseudodipolar Kitaev, (c) symmetric off-
diagonal 
, and (d) symmetric off-diagonal 
′. (e) Ratio of second-nearest-neighbor J2 to nearest-neighbor J1.
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TABLE V. Values of dimensionless function c2k (m, m′) for l=3.
Other values can be discerned via the identity c2k (m, m′) =
(−1)m−m′

c2k (m′, m).

m m′ c0 15c2 33c4 429c6

±3 ±3 1 −5 3 −5

±3 ±2 0 5 −√
30 5

√
7

±3 ±1 0 −√
10 3

√
6 −10

√
7

±3 0 0 0 −3
√

7 10
√

21

±2 ±2 1 0 −7 30

±2 ±1 0
√

15 4
√

2 −5
√

105

±2 0 0 −2
√

5 −√
3 20

√
14

±1 ±1 1 3 1 −75

±1 0 0
√

2
√

15 25
√

14

0 0 1 4 6 100

±3 ∓3 0 0 0 −10
√

231

±3 ∓2 0 0 0 5
√

462

±3 ∓1 0 0
√

42 −5
√

210

±2 ∓2 0 0
√

70 30
√

14

±2 ∓1 0 0 −√
14 −15

√
42

±1 ∓1 0 −2
√

6 −2
√

10 −10
√

105

TABLE VI. Atomic spin-orbit-coupling matrix assuming spheri-
cally symmetric localized f orbitals. This is consistent with Ref. [67]
in structure, though the reference contains a matrix for the f orbitals
which should be multiplied by 2.

h↑↑ �L · �S Local
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 0 0 i

x3 0 0 3i
4 0 0 i

√
15

4 0

y3 0 − 3i
4 0 0 i

√
15

4 0 0
z3 0 0 0 0 0 0 0

x(y2-z2) 0 0 − i
√

15
4 0 0 − i

4 0

y(z2-x2) 0 − i
√

15
4 0 0 i

4 0 0
z(x2-y2) −i 0 0 0 0 0 0

h↑↓ �L · �S Local
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 i 1 0

x3 0 0 0 − 3
4 0 0

√
15
4

y3 0 0 0 3i
4 0 0 i

√
15

4

z3 0 3
4 − 3i

4 0
√

15
4

i
√

15
4 0

x(y2-z2) −i 0 0 −
√

15
4 0 0 1

4

y(z2-x2) −1 0 0 − i
√

15
4 0 0 − i

4

z(x2-y2) 0 −
√

15
4 − i

√
15

4 0 − 1
4

i
4 0

TABLE VII. Spin-orbit coupling parameters (meV) for the local
part of the Hamiltonian, H loc

soc . Only elements greater than or equal to
10 meV are shown.

h↑↑ Local
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 0 0 392i
x3 0 42 262i 0 0 390i 0
y3 0 −262i 42 0 390i 0 0
z3 0 0 0 42 0 0 0
x(y2-z2) 0 0 −390i 0 −11 −80i 0
y(z2-x2) 0 −390i 0 0 80i −11 0
z(x2-y2) −392i 0 0 0 0 0 −11

h↑↓ Local
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 392i 392 0
x3 0 0 0 −262 0 0 390
y3 0 0 0 262i 0 0 390i
z3 0 262 −262i 0 390 390i 0
x(y2-z2) −392i 0 0 −390 0 0 80
y(z2-x2) −392 0 0 −390i 0 0 −80i
z(x2-y2) 0 −390 −390i 0 −80 80i 0

TABLE VIII. Spin-orbit coupling parameters (meV) for the non-
local part of the Hamiltonian, Hnloc

soc . Only elements greater than or
equal to 10 meV are shown.

h↑↑ Nonlocal (X1)
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 0 0 0
x3 0 11 −14i 0 0 0 0
y3 0 14i 0 0 0 0 0
z3 0 0 0 0 0 0 0
x(y2-z2) 0 0 0 0 −10 0 0
y(z2-x2) 0 0 0 0 0 −12 0
z(x2-y2) 0 0 0 0 0 0 −12

h↑↓ Nonlocal (X1)
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz 0 0 0 0 0 0 0
x3 0 0 0 14 0 0 0
y3 0 0 0 −15i 0 0 0
z3 0 −14 15i 0 0 0 0
x(y2-z2) 0 0 0 0 0 0 0
y(z2-x2) 0 0 0 0 0 0 0
z(x2-y2) 0 0 0 0 0 0 0
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FIG. 5. Band structure of KYbSe2 with SOC from DFT (black,
circles) and from WANNIER90 (red). The size of the circles represents
the Yb f character of the bands.

APPENDIX E: SYMMETRY IN
NEAREST-NEIGHBOR BONDS

Hoppings to nearest neighbors are presented in Table IX.

TABLE IX. Nearest-neighbor hopping (meV) without spin-orbit
coupling.

X1 bond
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz −3.38 −6.53 0.56 0.56 0 −0.26 0.26
x3 −6.53 36.53 0.87 0.87 0 −3.94 3.94
y3 0.56 0.87 80.38 −14.43 −4.96 −28.77 0.10
z3 0.56 0.87 −14.43 80.38 4.96 −0.10 28.77

x(y2-z2) 0 0 −4.96 4.96 −21.23 1.07 1.07
y(z2-x2) −0.26 −3.94 −28.77 −0.10 1.07 4.12 5.19
z(x2-y2) 0.26 3.94 0.10 28.77 1.07 5.19 4.12

Y1 bond
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz −3.38 0.56 −6.53 0.56 0.26 0 −0.26
x3 0.56 80.38 0.87 −14.43 28.77 4.96 −0.10
y3 −6.53 0.87 36.53 0.87 3.94 0 −3.94
z3 0.56 −14.43 0.87 80.38 0.10 −4.96 −28.77

x(y2-z2) 0.26 28.77 3.94 0.10 4.12 1.07 5.19
y(z2-x2) 0 4.96 0 −4.96 1.07 −21.23 1.07
z(x2-y2) −0.26 −0.10 −3.94 −28.77 5.19 1.07 4.12

Z1 bond
xyz x3 y3 z3 x(y2-z2) y(z2-x2) z(x2-y2)

xyz −3.38 0.56 0.56 −6.53 −0.26 0.26 0
x3 0.56 80.38 −14.43 0.87 −28.77 0.10 −4.96
y3 0.56 −14.43 80.38 0.87 −0.10 28.77 4.96
z3 −6.53 0.87 0.87 36.53 −3.94 3.94 0

x(y2-z2) −0.26 −28.77 −0.10 −3.94 4.12 5.19 1.07
y(z2-x2) 0.26 0.10 28.77 3.94 5.19 4.12 1.07
z(x2-y2) 0 −4.96 4.96 0 1.07 1.07 −21.23
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